
sophy Documentation
Release 0.4.2

Charles Leifer

Nov 01, 2018

Contents:

1 Installing 3
1.1 Installing with pip . 3
1.2 Obtaining the source code . 3
1.3 Running the tests . 3

2 Quick-start 5
2.1 Using Sophy . 5
2.2 CRUD operations . 6
2.3 Other dictionary methods . 7
2.4 Range queries . 7
2.5 Cursors . 8
2.6 Transactions . 9
2.7 Index types, multi-field keys and values . 10
2.8 Configuring and Administering Sophia . 11
2.9 Backups . 12

3 Sophy API 13
3.1 Environment . 13
3.2 Database . 15
3.3 Transaction . 19
3.4 Schema Definition . 19
3.5 Cursor . 21
3.6 Settings . 22

4 Indices and tables 25

i

ii

sophy Documentation, Release 0.4.2

Python binding for sophia embedded database, v2.2.

• Written in Cython for speed and low-overhead

• Clean, memorable APIs

• Comprehensive support for Sophia’s features

• Supports Python 2 and 3.

• No 3rd-party dependencies besides Cython (for building).

About Sophia:

• Ordered key/value store

• Keys and values can be composed of multiple fieldsdata-types

• ACID transactions

• MVCC, optimistic, non-blocking concurrency with multiple readers and writers.

• Multiple databases per environment

• Multiple- and single-statement transactions across databases

• Prefix searches

• Automatic garbage collection and key expiration

• Hot backup

• Compression

• Multi-threaded compaction

• mmap support, direct I/O support

• APIs for variety of statistics on storage engine internals

• BSD licensed

Contents: 1

http://sophia.systems
http://sophia.systems

sophy Documentation, Release 0.4.2

Some ideas of where Sophia might be a good fit:

• Running on application servers, low-latency / high-throughput

• Time-series

• Analytics / Events / Logging

• Full-text search

• Secondary-index for external data-store

Limitations:

• Not tested on Windoze.

If you encounter any bugs in the library, please open an issue, including a description of the bug and any related
traceback.

2 Contents:

https://github.com/coleifer/sophy/issues/new

CHAPTER 1

Installing

Up-to-date source code for sophia is bundled with the sophy source code, so the only thing you need to build is
Cython. If Cython is not installed, then the pre-generated C source files will be used.

sophy can be installed directly from the source or from pypi using pip.

1.1 Installing with pip

To install from PyPI:

$ pip install cython # optional
$ pip install sophy

To install the very latest version, you can install with git:

$ pip install -e git+https://github.com/coleifer/sophy#egg=sophy

1.2 Obtaining the source code

The source code is hosted on github and can be obtained and installed:

$ git clone https://github.com/colefer/sophy
$ cd sophy
$ python setup.py build
$ python setup.py install

1.3 Running the tests

Unit-tests and integration tests are distributed with the source and can be run from the root of the checkout:

3

http://sophia.systems
http://cython.org
https://github.com/coleifer/sophy
https://pypi.python.org/pypi/sophy
https://github.com/coleifer/sophy

sophy Documentation, Release 0.4.2

$ python tests.py

4 Chapter 1. Installing

CHAPTER 2

Quick-start

Sophy is very simple to use. It acts like a Python dict object, but in addition to normal dictionary operations, you can
read slices of data that are returned efficiently using cursors. Similarly, bulk writes using update() use an efficient,
atomic batch operation.

Despite the simple APIs, Sophia has quite a few advanced features. There is too much to cover everything in this
document, so be sure to check out the official Sophia storage engine documentation.

The next section will show how to perform common actions with sophy.

2.1 Using Sophy

Let’s begin by importing sophy and creating an environment. The environment can host multiple databases, each of
which may have a different schema. In this example our database will store UTF-8 strings as the key and value (though
other data-types are supported). Finally we’ll open the environment so we can start storing and retrieving data.

from sophy import Sophia, Schema, StringIndex

Instantiate our environment by passing a directory path which will store
the various data and metadata for our databases.
env = Sophia('/tmp/sophia-example')

We'll define a very simple schema consisting of a single utf-8 string for
the key, and a single utf-8 string for the associated value. Note that
the key or value accepts multiple indexes, allowing for composite
data-types.
schema = Schema([StringIndex('key')], [StringIndex('value')])

Create a key/value database using the schema above.
db = env.add_database('example_db', schema)

if not env.open():
raise Exception('Unable to open Sophia environment.')

5

http://sophia.systems/v2.2/

sophy Documentation, Release 0.4.2

In the above example we used StringIndex which stores UTF8-encoded string data. The following index types
are available:

• StringIndex - UTF8-encoded string data (text, in other words).

• BytesIndex - bytestrings (binary data).

• JsonIndex - store value as UTF8-encoded JSON.

• MsgPackIndex - store arbitrary data using msgpack encoding.

• PickleIndex - store arbitrary data using python pickle module.

• UUIDIndex - store UUIDs.

• SerializedIndex - index that accepts serialize/deserialize functions and can be used for msgpack or pickled
data, for example.

• U64Index - store 64-bit unsigned integers.

• U32Index - store 32-bit unsigned integers.

• U16Index - store 16-bit unsigned integers.

• U8Index - store 8-bit unsigned integers (or single bytes).

• There are also U64RevIndex, U32RevIndex, U16RevIndex and U8RevIndex for storing integers in
reverse order.

2.2 CRUD operations

Sophy databases use the familiar dict APIs for CRUD operations:

>>> db['name'] = 'Huey'
>>> db['animal_type'] = 'cat'
>>> print(db['name'], 'is a', db['animal_type'])
Huey is a cat

>>> 'name' in db
True
>>> 'color' in db
False

>>> del db['name']
>>> del db['animal_type']
>>> print(db['name']) # raises a KeyError.
KeyError: ('name',)

To insert multiple items efficiently, use the Database.update() method. Multiple items can be retrieved
or deleted efficiently using Database.multi_get(), Database.multi_get_dict(), and Database.
multi_delete():

>>> db.update(k1='v1', k2='v2', k3='v3')
>>> for value in db.multi_get('k1', 'k3', 'kx'):
... print(value)

v1
v3
None

(continues on next page)

6 Chapter 2. Quick-start

sophy Documentation, Release 0.4.2

(continued from previous page)

>>> db.multi_get_dict(['k1', 'k3', 'kx'])
{'k1': 'v1', 'k3': 'v3'}

>>> db.multi_delete('k1', 'k3', 'kx')
>>> 'k1' in db
False

2.3 Other dictionary methods

Sophy databases also provide efficient implementations of keys(), values() and items() for iterating over the
data-set. Unlike dictionaries, however, iterating directly over a Sophy Database will return the equivalent of the
items() method (as opposed to just the keys).

Note: Sophia is an ordered key/value store, so iteration will return items in the order defined by their index. So for
strings and bytes, this is lexicographic ordering. For integers it can be ascending or descending.

>>> db.update(k1='v1', k2='v2', k3='v3')
>>> list(db)
[('k1', 'v1'),
('k2', 'v2'),
('k3', 'v3')]

>>> db.items() # Returns a Cursor, which can be iterated.
<sophy.Cursor at 0x7f1dac231ee8>
>>> [item for item in db.items()]
[('k1', 'v1'),
('k2', 'v2'),
('k3', 'v3')]

>>> list(db.keys())
['k1', 'k2', 'k3']

>>> list(db.values())
['v1', 'v2', 'v3']

There are two ways to get the count of items in a database. You can use the len() function, which is not very efficient
since it must allocate a cursor and iterate through the full database. An alternative is the Database.index_count
property, which may not be exact as it includes transaction duplicates and not-yet-merged duplicates:

>>> len(db)
3
>>> db.index_count
3

2.4 Range queries

Because Sophia is an ordered data-store, performing ordered range scans is efficient. To retrieve a range of key-value
pairs with Sophy, use the ordinary dictionary lookup with a slice as the index:

2.3. Other dictionary methods 7

sophy Documentation, Release 0.4.2

>>> db.update(k1='v1', k2='v2', k3='v3', k4='v4')
>>> db['k1':'k3']
<generator at 0x7f1db413bbf8>

>>> list(db['k1':'k3']) # NB: other examples omit list() for clarity.
[('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')]

>>> db['k1.x':'k3.x'] # Inexact matches are OK, too.
[('k2', 'v2'), ('k3', 'v3')]

>>> db[:'k2'] # Omitting start or end retrieves from first/last key.
[('k1', 'v1'), ('k2', 'v2')]

>>> db['k3':]
[('k3', 'v3'), ('k4', 'v4')]

>>> db['k3':'k1'] # To retrieve a range in reverse, use the higher key first.
[('k3', 'v3'), ('k2', 'v2'), ('k1', 'v1')]

To retrieve a range in reverse order where the start or end is unspecified, you can pass in True as the step value of
the slice to also indicate reverse:

>>> db[:'k2':True] # Start-to-"k2" in reverse.
[('k2', 'v2'), ('k1', 'v1')]

>>> db['k3'::True]
[('k4', 'v4'), ('k3', 'v3')]

>>> db[::True]
[('k4', 'v4'), ('k3', 'v3'), ('k2', 'v2'), ('k1', 'v1')]

2.5 Cursors

For finer-grained control over iteration, or to do prefix-matching, Sophy provides a Cursor interface.

The cursor() method accepts five parameters:

• order (default=‘‘>=‘‘) - semantics for matching the start key and ordering results.

• key - the start key

• prefix - search for prefix matches

• keys - (default=‘‘True‘‘) – return keys while iterating

• values - (default=‘‘True‘‘) – return values while iterating

Suppose we were storing events in a database and were using an ISO-8601-formatted date-time as the key. Since
ISO-8601 sorts lexicographically, we could retrieve events in correct order simply by iterating. To retrieve a particular
slice of time, a prefix could be specified:

Iterate over events for July, 2017:
cursor = db.cursor(key='2017-07-01T00:00:00', prefix='2017-07-')
for timestamp, event_data in cursor:

process_event(timestamp, event_data)

8 Chapter 2. Quick-start

sophy Documentation, Release 0.4.2

2.6 Transactions

Sophia supports ACID transactions. Even better, a single transaction can cover operations to multiple databases in a
given environment.

Example of using Sophia.transaction():

account_balance = env.add_database('balance', ...)
transaction_log = env.add_database('transaction_log', ...)

...

def transfer_funds(from_acct, to_acct, amount):
with env.transaction() as txn:

To write to a database within a transaction, obtain a reference to
a wrapper object for the db:
txn_acct_bal = txn[account_balance]
txn_log = txn[transaction_log]

Transfer the asset by updating the respective balances. Note that we
are operating on the wrapper database, not the db instance.
from_bal = txn_acct_bal[from_acct]
txn_acct_bal[to_account] = from_bal + amount
txn_acct_bal[from_account] = from_bal - amount

Log the transaction in the transaction_log database. Again, we use
the wrapper for the database:
txn_log[from_account, to_account, get_timestamp()] = amount

Multiple transactions are allowed to be open at the same time, but if there are conflicting changes, an exception will
be thrown when attempting to commit the offending transaction:

Create a basic k/v store. Schema.key_value() is a convenience method
for string key / string value.
>>> kv = env.add_database('main', Schema.key_value())

Open the environment in order to access the new db.
>>> env.open()

Instead of using the context manager, we'll call begin() explicitly so we
can show the interaction of 2 open transactions.
>>> txn = env.transaction().begin()

>>> t_kv = txn[kv] # Obtain reference to kv database in transaction.
>>> t_kv['k1'] = 'v1' # Set k1=v1.

>>> txn2 = env.transaction().begin() # Start a 2nd transaction.
>>> t2_kv = txn2[kv] # Obtain a reference to the "kv" db in 2nd transaction.
>>> t2_kv['k1'] = 'v1-x' # Set k1=v1-x

>>> txn2.commit() # ERROR !!
SophiaError
...
SophiaError('transaction is not finished, waiting for concurrent transaction to
→˓finish.')

>>> txn.commit() # OK

(continues on next page)

2.6. Transactions 9

sophy Documentation, Release 0.4.2

(continued from previous page)

>>> txn2.commit() # Retry committing 2nd transaction. ERROR !!
SophiaError
...
SophiaError('transasction rolled back by another concurrent transaction.')

Sophia detected a conflict and rolled-back the 2nd transaction.

2.7 Index types, multi-field keys and values

Sophia supports multi-field keys and values. Additionally, the individual fields can have different data-types. Sophy
provides the following field types:

• StringIndex - UTF8-encoded string data (text, in other words).

• BytesIndex - bytestrings (binary data).

• JsonIndex - store value as UTF8-encoded JSON.

• MsgPackIndex - store arbitrary data using msgpack encoding.

• PickleIndex - store arbitrary data using python pickle module.

• UUIDIndex - store UUIDs.

• SerializedIndex - index that accepts serialize/deserialize functions and can be used for custom serializa-
tion formats.

• U64Index - store 64-bit unsigned integers.

• U32Index - store 32-bit unsigned integers.

• U16Index - store 16-bit unsigned integers.

• U8Index - store 8-bit unsigned integers (or single bytes).

• There are also U64RevIndex, U32RevIndex, U16RevIndex and U8RevIndex for storing integers in
reverse order.

To store arbitrary data encoded using msgpack, for example:

schema = Schema(StringIndex('key'), MsgPackIndex('value'))
db = sophia_env.add_database('main', schema)

If you have a custom serialization library you would like to use, you can use SerializedIndex, passing the
serialize/deserialize callables:

Equivalent to previous msgpack example.
import msgpack

schema = Schema(StringIndex('key'),
SerializedIndex('value', msgpack.packb, msgpack.unpackb))

db = sophia_env.add_database('main', schema)

To declare a database with a multi-field key or value, you will pass the individual fields as arguments when constructing
the Schema object. To initialize a schema where the key is composed of two strings and a 64-bit unsigned integer,
and the value is composed of a string, you would write:

10 Chapter 2. Quick-start

sophy Documentation, Release 0.4.2

Declare a schema consisting of a multi-part key and a string value.
key_parts = [StringIndex('last_name'),

StringIndex('first_name'),
U64Index('area_code')]

value_parts = [StringIndex('address_data')]
schema = Schema(key_parts, value_parts)

Create a database using the above schema.
address_book = env.add_database('address_book', schema)
env.open()

To store data, we use the same dictionary methods as usual, just passing tuples instead of individual values:

address_book['kitty', 'huey', 66604] = '123 Meow St'
address_book['puppy', 'mickey', 66604] = '1337 Woof-woof Court'

To retrieve our data:

>>> address_book['kitty', 'huey', 66604]
'123 Meow St.'

To delete a row:

>>> del address_book['puppy', 'mickey', 66604]

Indexing and slicing works as you would expect, with tuples being returned instead of scalar values where appropriate.

Note: When working with a multi-part value, a tuple containing the value components will be returned. When
working with a scalar value, instead of returning a 1-item tuple, the value itself is returned.

2.8 Configuring and Administering Sophia

Sophia can be configured using special properties on the Sophia and Database objects. Refer to the settings
configuration document for the details on the available options, including whether they are read-only, and the expected
data-type.

For example, to query Sophia’s status, you can use the Sophia.status property, which is a readonly setting
returning a string:

>>> print(env.status)
online

Other properties can be changed by assigning a new value to the property. For example, to read and then increase the
number of threads used by the scheduler:

>>> env.scheduler_threads
6
>>> env.scheduler_threads = 8

Database-specific properties are available as well. For example to get the number of GET and SET operations per-
formed on a database, you would write:

2.8. Configuring and Administering Sophia 11

sophy Documentation, Release 0.4.2

>>> print(db.stat_get, 'get operations')
24 get operations
>>> print(db.stat_set, 'set operations')
33 set operations

Refer to the settings configuration table for a complete list of available settings.

2.9 Backups

Sophia can create a backup the database while it is running. To configure backups, you will need to set the path for
backups before opening the environment:

env = Sophia('/path/to/data')
env.backup_path = '/path/for/backup-data/'

env.open()

At any time while the environment is open, you can call the backup_run() method, and a backup will be started in
a background thread:

env.backup_run()

Backups will be placed in numbered folders inside the backup_path specified during environment configuration.
You can query the backup status and get the ID of the last-completed backup:

env.backup_active # Returns 1 if running, 0 if completed/idle
env.backup_last # Get ID of last-completed backup
env.backup_last_complete # Returns 1 if last backup succeeded

12 Chapter 2. Quick-start

CHAPTER 3

Sophy API

class SophiaError
General exception class used to indicate error returned by Sophia database.

3.1 Environment

class Sophia(path)

Parameters path (str) – Directory path to store environment and databases.

Environment object providing access to databases and for controlling transactions.

Example of creating environment, attaching a database and reading/writing data:

from sophy import *

Environment for managing one or more databases.
env = Sophia('/tmp/sophia-test')

Schema describes the indexes that comprise the key and value portions
of a database.
kv_schema = Schema([StringIndex('key')], [StringIndex('value')])
db = env.add_data('kv', kv_schema)

We need to open the env after configuring the database(s), in order
to read/write data.
assert env.open(), 'Failed to open environment!'

We can use dict-style APIs to read/write key/value pairs.
db['k1'] = 'v1'
assert db['k1'] == 'v1'

(continues on next page)

13

sophy Documentation, Release 0.4.2

(continued from previous page)

Close the env when finished.
assert env.close(), 'Failed to close environment!'

open()

Returns Boolean indicating success.

Open the environment. The environment must be opened in order to read and write data to the configured
databases.

close()

Returns Boolean indicating success.

Close the environment.

add_database(name, schema)

Parameters

• name (str) – database name

• schema (Schema) – schema for keys and values.

Returns a database instance

Return type Database

Add or declare a database. Environment must be closed to add databases. The Schema will declare the
data-types and structure of the key- and value-portion of the database.

env = Sophia('/path/to/db-env')

Declare an events database with a multi-part key (ts, type) and
a msgpack-serialized data field.
events_schema = Schema(

key_parts=[U64Index('timestamp'), StringIndex('type')],
value_parts=[MsgPackIndex('data')])

db = env.add_database('events', events_schema)

Open the environment for read/write access to the database.
env.open()

We can now write to the database.
db[current_time(), 'init'] = {'msg': 'event logging initialized'}

remove_database(name)

Parameters name (str) – database name

Remove a database from the environment. Environment must be closed to remove databases. This method
does really not have any practical value but is provided for consistency.

get_database(name)

Returns the database corresponding to the provided name

Return type Database

Obtain a reference to the given database, provided the database has been added to the environment by a
previous call to add_database().

__getitem__(name)
Short-hand for get_database().

14 Chapter 3. Sophy API

sophy Documentation, Release 0.4.2

transaction()

Returns a transaction handle.

Return type Transaction

Create a transaction handle which can be used to execute a transaction on the databases in the environment.
The returned transaction can be used as a context-manager.

Example:

env = Sophia('/tmp/sophia-test')
db = env.add_database('test', Schema.key_value())
env.open()

with env.transaction() as txn:
t_db = txn[db]
t_db['k1'] = 'v1'
t_db.update(k2='v2', k3='v3')

Transaction has been committed.
print(db['k1'], db['k3']) # prints "v1", "v3"

See Transaction for more information.

3.2 Database

class Database
Database interface. This object is not created directly, but references can be obtained via Sophia.
add_database() or Sophia.get_database().

For example:

env = Sophia('/path/to/data')

kv_schema = Schema(StringIndex('key'), MsgPackIndex('value'))
kv_db = env.add_database('kv', kv_schema)

Another reference to "kv_db":
kv_db = env.get_database('kv')

Same as above:
kv_db = env['kv']

set(key, value)

Parameters

• key – key corresponding to schema (e.g. scalar or tuple).

• value – value corresponding to schema (e.g. scalar or tuple).

Returns No return value.

Store the value at the given key. For single-index keys or values, a scalar value may be provided as the key
or value. If a composite or multi-index key or value is used, then a tuple must be provided.

Examples:

3.2. Database 15

sophy Documentation, Release 0.4.2

simple = Schema(StringIndex('key'), StringIndex('value'))
simple_db = env.add_database('simple', simple)

composite = Schema(
[U64Index('timestamp'), StringIndex('type')],
[MsgPackIndex('data')])

composite_db = env.add_database('composite', composite)

env.open() # Open env to access databases.

Set k1=v1 in the simple key/value database.
simple_db.set('k1', 'v1')

Set new value in composite db. Note the key is a tuple and, since
the value is serialized using msgpack, we can transparently store
data-types like dicts.
composite_db.set((current_time, 'evt_type'), {'msg': 'foo'})

get(key[, default=None])
Parameters

• key – key corresponding to schema (e.g. scalar or tuple).

• default – default value if key does not exist.

Returns value of given key or default value.

Get the value at the given key. If the key does not exist, the default value is returned.

If a multi-part key is defined for the given database, the key must be a tuple.

Example:

simple_db.set('k1', 'v1')
simple_db.get('k1') # Returns "v1".

simple_db.get('not-here') # Returns None.

delete(key)

Parameters key – key corresponding to schema (e.g. scalar or tuple).

Returns No return value

Delete the given key, if it exists. If a multi-part key is defined for the given database, the key must be a
tuple.

Example:

simple_db.set('k1', 'v1')
simple_db.delete('k1') # Deletes "k1" from database.

simple_db.exists('k1') # False.

exists(key)

Parameters key – key corresponding to schema (e.g. scalar or tuple).

Returns Boolean indicating if key exists.

Return type bool

16 Chapter 3. Sophy API

sophy Documentation, Release 0.4.2

Return whether the given key exists. If a multi-part key is defined for the given database, the key must be
a tuple.

multi_set([__data=None[, **kwargs]])
Parameters

• __data (dict) – Dictionary of key/value pairs to set.

• kwargs – Specify key/value pairs as keyword-arguments.

Returns No return value

Set multiple key/value pairs efficiently.

multi_get(*keys)

Parameters keys – key(s) to retrieve

Returns a list of values associated with the given keys. If a key does not exist a None will be
indicated for the value.

Return type list

Get multiple values efficiently. Returned as a list of values corresponding to the keys argument, with
missing values as None.

Example:

db.update(k1='v1', k2='v2', k3='v3')
db.multi_get('k1', 'k3', 'k-nothere')
['v1', 'v3', None]

multi_get_dict(keys)

Parameters keys (list) – list of keys to get

Returns a list of values associated with the given keys. If a key does not exist a None will be
indicated for the value.

Return type list

Get multiple values efficiently. Returned as a dict of key/value pairs. Missing values are not represented
in the returned dict.

Example:

db.update(k1='v1', k2='v2', k3='v3')
db.multi_get_dict(['k1', 'k3', 'k-nothere'])
{'k1': 'v1', 'k3': 'v3'}

multi_delete(*keys)

Parameters keys – key(s) to delete

Returns No return value

Efficiently delete multiple keys.

get_range(start=None, stop=None, reverse=False)

Parameters

• start – start key (omit to start at first record).

• stop – stop key (omit to stop at the last record).

3.2. Database 17

sophy Documentation, Release 0.4.2

• reverse (bool) – return range in reverse.

Returns a generator that yields the requested key/value pairs.

Fetch a range of key/value pairs from the given start-key, up-to and including the stop-key (if given).

keys()
Return a cursor for iterating over the keys in the database.

values()
Return a cursor for iterating over the values in the database.

items()
Return a cursor for iterating over the key/value pairs in the database.

__getitem__(key_or_slice)

Parameters key_or_slice – key or range of keys to retrieve.

Returns value of given key, or an iterator over the range of keys.

Raises KeyError if single key requested and does not exist.

Retrieve a single value or a range of values, depending on whether the key represents a single row or a
slice of rows.

Additionally, if a slice is given, the start and stop values can be omitted to indicate you wish to start from
the first or last key, respectively.

__setitem__(key, value)
Equivalent to set().

__delitem__(key)
Equivalent to delete().

__contains__(key)
Equivalent to exists().

__iter__()
Equivalent to items().

__len__()
Equivalent to iterating over all keys and returning count. This is the most accurate way to get the total num-
ber of keys, but is not very efficient. An alternative is to use the Database.index_count property,
which returns an approximation of the number of keys in the database.

cursor(order=’>=’, key=None, prefix=None, keys=True, values=True)

Parameters

• order (str) – ordering semantics (default is “>=”)

• key – key to seek to before iterating.

• prefix – string prefix to match.

• keys (bool) – return keys when iterating.

• values (bool) – return values when iterating.

Create a cursor with the given semantics. Typically you will want both keys=True and values=True
(the defaults), which will cause the cursor to yield a 2-tuple consisting of (key, value) during itera-
tion.

18 Chapter 3. Sophy API

sophy Documentation, Release 0.4.2

3.3 Transaction

class Transaction
Transaction handle, used for executing one or more operations atomically. This class is not created directly -
use Sophia.transaction().

The transaction can be used as a context-manager. To read or write during a transaction, you should obtain a
transaction-specific handle to the database you are operating on.

Example:

env = Sophia('/tmp/my-env')
db = env.add_database('kv', Schema.key_value())
env.open()

with env.transaction() as txn:
tdb = txn[db] # Obtain reference to "db" in the transaction.
tdb['k1'] = 'v1'
tdb.update(k2='v2', k3='v3')

At the end of the wrapped block, the transaction is committed.
The writes have been recorded:
print(db['k1'], db['k3'])
('v1', 'v3')

begin()
Begin a transaction.

commit()

Raises SophiaError

Commit all changes. An exception can occur if:

1. The transaction was rolled back, either explicitly or implicitly due to conflicting changes having been
committed by a different transaction. Not recoverable.

2. A concurrent transaction is open and must be committed before this transaction can commit. Possibly
recoverable.

rollback()
Roll-back any changes made in the transaction.

__getitem__(db)

Parameters db (Database) – database to reference during transaction

Returns special database-handle for use in transaction

Return type DatabaseTransaction

Obtain a reference to the database for use within the transaction. This object supports the same APIs as
Database, but any reads or writes will be made within the context of the transaction.

3.4 Schema Definition

class Schema(key_parts, value_parts)

Parameters

3.3. Transaction 19

sophy Documentation, Release 0.4.2

• key_parts (list) – a list of Index objects (or a single index object) to use as the key
of the database.

• value_parts (list) – a list of Index objects (or a single index object) to use for the
values stored in the database.

The schema defines the structure of the keys and values for a given Database. They can be comprised of a
single index-type or multiple indexes for composite keys or values.

Example:

Simple schema defining text keys and values.
simple = Schema(StringIndex('key'), StringIndex('value'))

Schema with composite key for storing timestamps and event-types,
along with msgpack-serialized data as the value.
event_schema = Schema(

[U64Index('timestamp'), StringIndex('type')],
[MsgPackIndex('value')])

Schemas are used when adding databases using the Sophia.add_database() method.

add_key(index)

Parameters index (BaseIndex) – an index object to add to the key parts.

Add an index to the key. Allows Schema to be built-up programmatically.

add_value(index)

Parameters index (BaseIndex) – an index object to add to the value parts.

Add an index to the value. Allows Schema to be built-up programmatically.

classmethod key_value()
Short-hand for creating a simple text schema consisting of a single StringIndex for both the key and
the value.

class BaseIndex(name)

Parameters name (str) – Name for the key- or value-part the index represents.

Indexes are used to define the key and value portions of a Schema. Traditional key/value databases typically
only supported a single-value, single-datatype key and value (usually bytes). Sophia is different in that keys or
values can be comprised of multiple parts with differing data-types.

For example, to emulate a typical key/value store:

schema = Schema([BytesIndex('key')], [BytesIndex('value')])
db = env.add_database('old_school', schema)

Suppose we are storing time-series event logs. We could use a 64-bit integer for the timestamp (in micro-
seconds) as well as a key to denote the event-type. The value could be arbitrary msgpack-encoded data:

key = [U64Index('timestamp'), StringIndex('type')]
value = [MsgPackIndex('value')]
events = env.add_database('events', Schema(key, value))

class SerializedIndex(name, serialize, deserialize)

Parameters

• name (str) – Name for the key- or value-part the index represents.

20 Chapter 3. Sophy API

sophy Documentation, Release 0.4.2

• serialize – a callable that accepts data and returns bytes.

• deserialize – a callable that accepts bytes and deserializes the data.

The SerializedIndex can be used to transparently store data as bytestrings. For example, you could use a
library like msgpack or pickle to transparently store and retrieve Python objects in the database:

key = StringIndex('key')
value = SerializedIndex('value', pickle.dumps, pickle.loads)
pickled_db = env.add_database('data', Schema([key], [value]))

Note: sophy already provides indexes for JsonIndex, MsgPackIndex and PickleIndex.

class BytesIndex(name)
Store arbitrary binary data in the database.

class StringIndex(name)
Store text data in the database as UTF8-encoded bytestrings. When reading from a StringIndex, data is
decoded and returned as unicode.

class JsonIndex(name)
Store data as UTF8-encoded JSON. Python objects will be transparently serialized and deserialized when writing
and reading, respectively.

class MsgPackIndex(name)
Store data using the msgpack serialization format. Python objects will be transparently serialized and deserial-
ized when writing and reading.

Note: Requires the msgpack-python library.

class PickleIndex(name)
Store data using Python’s pickle serialization format. Python objects will be transparently serialized and deseri-
alized when writing and reading.

class UUIDIndex(name)
Store UUIDs. Python uuid.UUID() objects will be stored as raw bytes and decoded to uuid.UUID()
instances upon retrieval.

class U64Index(name)

class U32Index(name)

class U16Index(name)

class U8Index(name)
Store unsigned integers of the given sizes.

class U64RevIndex(name)

class U32RevIndex(name)

class U16RevIndex(name)

class U8RevIndex(name)
Store unsigned integers of the given sizes in reverse order.

3.5 Cursor

class Cursor
Cursor handle for a Database. This object is not created directly but through the Database.cursor()
method or one of the database methods that returns a row iterator (e.g. Database.items()).

3.5. Cursor 21

sophy Documentation, Release 0.4.2

Cursors are iterable and, depending how they were configured, can return keys, values or key/value pairs.

3.6 Settings

Sophia supports a wide range of settings and configuration options. These settings are also documented in the Sophia
documentation.

3.6.1 Environment settings

The following settings are available as properties on Sophia:

Setting Type Description
version string, ro Get current Sophia version
version_storage string, ro Get current Sophia storage version
build string, ro Get git commit hash of build
status string, ro Get environment status (eg online)
errors int, ro Get number of errors
error string, ro Get last error description
path string, ro Get current Sophia environment directory
Backups
backup_path string Set backup path
backup_run method Start backup in background (non-blocking)
backup_active int, ro Show if backup is running
backup_last int, ro Show ID of last-completed backup
backup_last_complete int, ro Show if last backup succeeded
Scheduler
scheduler_threads int Get or set number of worker threads
scheduler_trace(thread_id) method Get a worker trace for given thread
Transaction Manager
transaction_online_rw int, ro Number of active read/write transactions
transaction_online_ro int, ro Number of active read-only transactions
transaction_commit int, ro Total number of completed transactions
transaction_rollback int, ro Total number of transaction rollbacks
transaction_conflict int, ro Total number of transaction conflicts
transaction_lock int, ro Total number of transaction locks
transaction_latency string, ro Average transaction latency from start to end
transaction_log string, ro Average transaction log length
transaction_vlsn int, ro Current VLSN
transaction_gc int, ro SSI GC queue size
Metrics
metric_lsn int, ro Current log sequential number
metric_tsn int, ro Current transaction sequential number
metric_nsn int, ro Current node sequential number
metric_dsn int, ro Current database sequential number
metric_bsn int, ro Current backup sequential number
metric_lfsn int, ro Current log file sequential number
Write-ahead Log
log_enable int Enable or disable transaction log
log_path string Get or set folder for log directory

Continued on next page

22 Chapter 3. Sophy API

http://sophia.systems/v2.2/conf/log.html
http://sophia.systems/v2.2/conf/log.html

sophy Documentation, Release 0.4.2

Table 1 – continued from previous page
Setting Type Description
log_sync int Sync transaction log on every commit
log_rotate_wm int Create a new log after “rotate_wm” updates
log_rotate_sync int Sync log file on every rotation
log_rotate method Force Sophia to rotate log file
log_gc method Force Sophia to garbage-collect log file pool
log_files int, ro Number of log files in the pool

3.6.2 Database settings

The following settings are available as properties on Database. By default, Sophia uses pread(2) to read from
disk. When mmap-mode is on (by default), Sophia handles all requests by directly accessing memory-mapped node
files.

Setting Type Description
database_name string, ro Get database name
database_id int, ro Database sequential ID
database_path string, ro Directory for storing data
mmap int Enable or disable mmap-mode
direct_io int Enable or disable O_DIRECT mode.
sync int Sync node file on compaction completion
expire int Enable or disable key expiration
compression string Specify compression type: lz4, zstd, none (default)
limit_key int, ro Scheme key size limit
limit_field int Scheme field size limit
Index
index_memory_used int, ro Memory used by database for in-memory key indexes
index_size int, ro Sum of nodes size in bytes (e.g. database size)
index_size_uncompressed int, ro Full database size before compression
index_count int, ro Total number of keys in db, includes unmerged dupes
index_count_dup int, ro Total number of transactional duplicates
index_read_disk int, ro Number of disk reads since start
index_read_cache int, ro Number of cache reads since start
index_node_count int, ro Number of active nodes
index_page_count int, ro Total number of pages
Compaction
compaction_cache int Total write cache size used for compaction
compaction_checkpoint int
compaction_node_size int Set a node file size in bytes.
compaction_page_size int Set size of page
compaction_page_checksum int Validate checksum during compaction
compaction_expire_period int Run expire check process every N seconds
compaction_gc_wm int GC starts when watermark value reaches N dupes
compaction_gc_period int Check for a gc every N seconds
Performance
stat_documents_used int, ro Memory used by allocated document
stat_documents int, ro Number of currently allocated documents
stat_field string, ro Average field size
stat_set int, ro Total number of Set operations

Continued on next page

3.6. Settings 23

sophy Documentation, Release 0.4.2

Table 2 – continued from previous page
Setting Type Description
stat_set_latency string, ro Average Set latency
stat_delete int, ro Total number of Delete operations
stat_delete_latency string, ro Average Delete latency
stat_get int, ro Total number of Get operations
stat_get_latency string, ro Average Get latency
stat_get_read_disk string, ro Average disk reads by Get operation
stat_get_read_cache string, ro Average cache reads by Get operation
stat_pread int, ro Total number of pread operations
stat_pread_latency string, ro Average pread latency
stat_cursor int, ro Total number of cursor operations
stat_cursor_latency string, ro Average cursor latency
stat_cursor_read_disk string, ro Average disk reads by Cursor operation
stat_cursor_read_cache string, ro Average cache reads by Cursor operation
stat_cursor_ops string, io Average number of keys read by Cursor operation
Scheduler
scheduler_gc int, ro Show if GC operation is in progress
scheduler_expire int, ro Show if expire operation is in progress
scheduler_backup int, ro Show if backup operation is in progress
scheduler_checkpoint int, ro

24 Chapter 3. Sophy API

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

25

sophy Documentation, Release 0.4.2

26 Chapter 4. Indices and tables

Index

Symbols
__contains__() (Database method), 18
__delitem__() (Database method), 18
__getitem__() (Database method), 18
__getitem__() (Sophia method), 14
__getitem__() (Transaction method), 19
__iter__() (Database method), 18
__len__() (Database method), 18
__setitem__() (Database method), 18

A
add_database() (Sophia method), 14
add_key() (Schema method), 20
add_value() (Schema method), 20

B
BaseIndex (built-in class), 20
begin() (Transaction method), 19
BytesIndex (built-in class), 21

C
close() (Sophia method), 14
commit() (Transaction method), 19
Cursor (built-in class), 21
cursor() (Database method), 18

D
Database (built-in class), 15
delete() (Database method), 16

E
exists() (Database method), 16

G
get() (Database method), 16
get_database() (Sophia method), 14
get_range() (Database method), 17

I
items() (Database method), 18

J
JsonIndex (built-in class), 21

K
key_value() (Schema class method), 20
keys() (Database method), 18

M
MsgPackIndex (built-in class), 21
multi_delete() (Database method), 17
multi_get() (Database method), 17
multi_get_dict() (Database method), 17
multi_set() (Database method), 17

O
open() (Sophia method), 14

P
PickleIndex (built-in class), 21

R
remove_database() (Sophia method), 14
rollback() (Transaction method), 19

S
Schema (built-in class), 19
SerializedIndex (built-in class), 20
set() (Database method), 15
Sophia (built-in class), 13
SophiaError (built-in class), 13
StringIndex (built-in class), 21

T
Transaction (built-in class), 19
transaction() (Sophia method), 14

27

sophy Documentation, Release 0.4.2

U
U16Index (built-in class), 21
U16RevIndex (built-in class), 21
U32Index (built-in class), 21
U32RevIndex (built-in class), 21
U64Index (built-in class), 21
U64RevIndex (built-in class), 21
U8Index (built-in class), 21
U8RevIndex (built-in class), 21
UUIDIndex (built-in class), 21

V
values() (Database method), 18

28 Index

	Installing
	Installing with pip
	Obtaining the source code
	Running the tests

	Quick-start
	Using Sophy
	CRUD operations
	Other dictionary methods
	Range queries
	Cursors
	Transactions
	Index types, multi-field keys and values
	Configuring and Administering Sophia
	Backups

	Sophy API
	Environment
	Database
	Transaction
	Schema Definition
	Cursor
	Settings

	Indices and tables

